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~Z~z ERRATA to TP 83-1

P "Forcing Regression Through a Given Point Using Any Familiar Comiputational
Routine," Edward B. Hands, Mar. 1983.

* Page 12, Section 111,1, paragraph 2, line 8 should read:

Thus, the regression coefficient produced in this manner is not only the least
squares solution for the artificially exctended data set, but for the observed
data set as veil.
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PREFACE

This report draws attention to the frequent, but often neglected, need to
force a regression line through a known point while obtaining the best possi-
ble fit to all experimental data points. A simple method is described for

solving this problem without modifying customary computational routines. This
method can be applied to many problems, but is especially useful when cali-
brating empirical prediction formulas to fit site-specific coastal conditions
or when choosing from among several theoretical prediction models. The work
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted to
metric (SI) units as follows:

Multiply by To obtain

inches 25.4 millimeters
2.54 centimeters

square inches 6.452 square centimeters
cubic inches 16.39 cubic centimeters

feet 30.48 centimeters
0.3048 meters

square feet 0.0929 square meters
cubic feet 0.0283 cubic meters

yards 0.9144 meters
square yards 0.836 square meters
cubic yards 0.7646 cubic meters

miles 1.6093 kilometers

square miles 259.0 hectares

knots 1.852 kilometers per hour

acres 0.4047 hectares

foot-pounds 1.3558 newton meters

millibars 1.0197 x 10- 3  kilograms per square centimeter

ounces 28.35 grams

pounds 453.6 grams
0.4536 kilograms

ton, long 1.0160 metric tons

ton, short 0.9072 metric tons

degrees (angle) 0.01745 radians

Fahrenheit degrees 5/9 Celsius degrees or Kelvinsi

ITo obtain Celsius (C) temperature readings from Fahrenheit (F) readings,
use formula: C - (5/9) (F -32).

To obtain Kelvin () readings, use formula: K = (5/9) (F -32) + 273.15.

5

0 - , , -9,S,9-5 5



SYMBOLS AND DEFINITIONS

F The F-value may be produced by a multiple regression program and
is analogous to the t-value in simple regression (one independent varia-
ble). The F-value indicates the "significance" of r 2 and is useful
in selecting the most important independent variables.

;'.'"'" F E(_ - Y_)2 ( n - p -  )~ ) p=Ir r 2  (n -- 1p

E(y -^)
2  \p l~ 2 \

Hb height of breaking waves

n size of the sample

p total number of independent variables. Caution, several observed car-
riers may end up combined into a single independent variable; e.g.,
X = (gHb) 1/2 sin 2ab  has two distinct carriers (Hb and ab) but is
one independent variable (see example problem 1). The value of p will
be one less than the number of constants to be estimated in Model I,
and is equal to the number of constants in Model II.

r sample correlation coefficient. The r-value produced by regression
partially measures the closeness of fit between the linear predictor and
data. Its square is called the coefficient of determination.

r2= Z(y-) 2  Z(y- ) (x- 3) (Model I)
E(y - y)2 E(y _ )2 .(x - X)2

r2 Eyx (Model II)
(Ey) 

2 (Ex) 2

SSx  sum of squares of x may be produced by the regression program

and is useful for computing other values, e.g., S^.

Ss x - E(x- -)2

. Si standard error of the estimated slope,

1Ix
The larger Sj, the less reliable is the estimate of slope.

S2  unbiased estimator of the variance of the random component C, e.g.,
y.x

. " E ( y - ) 2
S 2  - in Model I
y.x n-p-1

The number of independent variables, p, is 1 in simple regression
with Model I. The mean square deviation from regression corresponds to

-..~ W 1P 4P 4P AP RP .p W. RP .. W5. .



the simple variance used to measure the spread of values in a single
data set. It is also sometimes called the standard error of the estimate.

" The value produced by regression to indicate uncertainty of the esti-
mated y; the value 2 .x depends on the variances of all the estimated
coefficients.

t The t-value produced in simple regression to test whether the estimated
regression coefficient is "significantly" different from zero.

-0
t Si

v longshore current velocity

X independent variable in regression

x observed values of X. A string of n-values in simple regression; a

n by p matrix in multiple regression

Y dependent variable to be estimated

y n observed values of Y

y estimated value of Y for given values of X

Y-intercept in a regression model

Ob  angle between the crest of the breaking wave and the shoreline

* estimated regression coefficients in multiple regression or the slope of
the line in simple regression

Z~~x - x)(y - y
E" -ffi (Model I)

zxy

X-f (Model II)

C zero-mean random component of Y assumed by both regression models

7

AP. 0 0 0_ 0 0, ' W'. W

- '.. .. J*



FORCING REGRESSION THROUGH A GIVEN POINT USING ANY
FAMILIAR COMPUTATIONAL ROUTINE

by

Edward B. Hands

1. INTRODUCTION TO REGRESSION

The engineer frequently needs to estimate some response or dependent variable
Y (e.g., sand transport rate, change in shoreline position, or structural dam-
age), when given the magnitude of other factors, or independent variables K
(e.g., longshore wave energy flux, storm frequency, elevation of storm surges,
etc.). A common approach is to assume a linear model,

Y =a + OX + e (Model I)

then adopt the principle of least squares; and use sample data to estimate the
unknown parameters, a and 8. Both 0 and X can be considered as strings
of numbers in the case of multiple regression with several independent varia-
bles; c indicates that the response is not being thought of as an exact linear
function of X. The c represents random and unpredictable elements in Y;
therefore, c does not appear in the prediction equation: j=&+ B^ x, where

a, , and a are estimates of the corresponding components in the conceptual
Model I. The assumption that e has an expected value of zero indicates that
the "average" response is considered linear. If c varies widely, Model I,
though conceptually correct, may have only limited predictive value. In such
a case the estimated mean value of Y would frequently be thrown off by noise

* in the data. If e varies only slightly, good predictions will be possible
provided good estimates of a and 8 are available. Adopting the principle
of least squares means one is willing to define the best estimates of as and
0 as those that minimize the sum of the squares of the deviations between the
observed and predicted values (i.e., y and9)

Customarily, no constraints are placed on the contenders for the best fit
* line. Of all possible lines in the XY plane, the prediction equation is

chosen because it has the least sums of squares of deviations in ^'s from the
data points. The y-intercept, a, is the point where the best fit line inter-
sects the Y-axis. The a^ may be of special interest, e.g., in the regression
of current speed against longshore wave energy flux measured in a field test
(Fig. 1). An intercept substantially above zero would suggest that during the
test a component of the longshore current was driven by mechanisms other than
waves (e.g., tides or winds). In this case, the nonzero intercept would not
only be meaningful, but would also provide a good estimate of the velocity of

* any steady, nonwave-generated coastal current during the test.

An additional example of unconstrained regression would be where greater
* and greater structural damage occurs as the wave forces exceed an undetermined

threshold valute. Again Model I applies and produces the correct regression
coe~ficient I). In the process it produces a meaningless response intercept
we? '-low ..v (Fig. 2). In contrast with the previous example, the interest

* here 4- stx-ctly in the prediction of future damage for given wave forces, not
in the value of the intercept itself. The resulting linear relationship applies
only to values of the independent variable above the threshold of wave effect.

9
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0: 0

T 5 .-. Positive Intercept

Wave Energy Flux

Figure 1. Application of Model I produces an intercept (a),
which may be a useful estimate of a component of
longshore flow which is independent of wave con-
ditions and presumably pervades the entire data
set.

- 0

E
a0.. A 0

• ". Wove Forces" A"

•_:...s- Negative intercept

Figure 2. Application of Model I identified a threshold value
below which waves cause no damage. A negative inter-
cept is produced, but is of no interest in this
particular problem.
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Although the negative intercept ()is in itself meaningless, Model I is

correct because there is no basis for constrainingc.

II. A PROBLEM WITH THE CUSTOMARY APPROACH

There are many cases where the logic of the application dictates the
response at a particular value of X. For example, if the response is some
change that is regressed against time then the response must be 0 when X =0
(Fig. 3). If there is no elapse time, there can be no change. If the linear
assumption is valid, the appropriate conceptual mode is

Y = X + E (Model II)

and the customary predictive equation (based on Model I) is inappropriate and
may give poor estimates of 6 (see Fig. 4). Yet the vast majority of regres-
sion programs (e.g., SPSS, IMSL, IBM's 5110 package, and TI-59) do not allow
specification of a zero intercept or any constraint through a known point.
Sta.tistical texts usually do not cover this topic either. However, formulas

frthe zero-intercept case are given by Brownlee (1965) and Krumbein (1965).

a0 Time

Figure 3. Application of Model II forces a zero-intercept solution.

y A
Model I1 I =0.63

A
Model I =~p 0.34

0x

Figure 4. Model II estimates an increase in Y per unit increase in X
that is nearly twice that predicted using Model I. The phy-
sical relationship between X and Y dictates which model
should be adopted. If Model II is appropriate the solution can
be obtained using a simple artifice described in this report
to modify results of standard computer programs intended for
Model 1.



I7

The value of Y may be known for a single value of X (not necessarily 0).
The best prediction should then be sought from among the limited subset of
lines through this point. All these lines will have a larger sum of squares
(E[y ]2) than the line that would have been selected by Model 1. A simple
procedure is described herein for picking from among these restricted candidates
the one with the smallest E4y - 12. Thus, regressing through the origin is
but one specific case that can be solved by a general model forcing regression
at an arbitrary point.

III. SOLUTION TO THE PROBLEM

This report describes a method for getting the best fit to all data points
(in the sense of least squares) while forcing an exact fit at any known point.
A simple procedure for forcing regression through the origin was described by
Hawkins (1980), who indicated the procedure was not well known. The author of
this report knows of no references to the general case of an exact fit to an
arbitrary point. However, if a fit can be constrained through the origin, then
a simple transform of variables can force the line through any given point.
The details of the through-the-origin solution will be explained first.

1. Regression Through the Origin.

For each set of measured dependent and independent variables observed
(y1, xi), also enter, or program, a mirror-image set (-yi, -xi). Thus, the
computer is given an extended data set consisting of 2n data points, only n

* . of which were observed. By definition of this extended data set, the depend-
ent and all the independent variables each individually sum to zero, forcing
a zero intercept:

a= y -8x by the principle of least squares

a 0 because Ex and Ey = 0 and thus

x = y = 0 on the extended data set

Thus a zero-intercept solution is obtained. is it still the least squares
solution for the observed data set? The principle of least squares by defini-
tion minimizes the sum of the squares of the deviations of the observed from
the predicted values. Because each squared deviation from the observed data
set generates an identical squared deviation in the extended data set, the sum
of these two positive sequences is minimized over the extended data set only
if it is also minimized over both the observed and the mirror-image sets.
Thus, the regression coefficient produced in this manner not only the least
squares solution for the artificially extended data set, but for the observed
data set as well. By this artifice the proper estimate is obtained for the
regression coefficient (B) with the prediction forced through the origin.

e 2. Regression Through Any Arbitrary Point (a, b).

If the predicted response (Yt) must be a when the independent variables
(X) are b, then regress an extended data set u on v, where u - x -a

* and v - y - b. If (a, b) - (0, 0), then this collapses to the exact
situation described above. If (a, b) ,I (0, 0), the direct results, Sv B,

6 should be unraveled to produce the y prediction:

12
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U- -b 8(x -a)

y (b a a9) + A

NOTE: The proper estimate of the regression coefficient ()now forces the
prediction through the point (a, b) as desired. By using this procedure the
correct regression coefficient is obtained by using any familiar computational
routines. The second most frequently reported output from regression programs,
the correlation coefficient (r), is also the correct, unbiased estimator for
Model 11.

If additional information is provided by the regression program, then
corrections may be necessary before adopting them for the real data set. The

* estimate of the residual variance will be correct for simple regression (one
independent variable) and can be easily adjusted for multiple regression (see
Table 1). Any sums of squares, cross products, and F-values produced by the
program will be exactly twice the correct values. The standard error of the
estimated slope will be too small by a factor of r2. Therefore, the t-vatue,
for testing the zero slope hypothesis, will be too large by the same factor.

Table 1 indicates the corrections for most of the elements produced by
various . gression programs. However, employing the described extended data
procedures does not require consideration of any part of the output beyond that
used in the standard unconstrained approach.

IV. SELECTING BETWEEN MODELS I AND II

If either the true or mean value (whichever interpretation fits the situa-
tion) of the dependent variable (Y) is unknown for all values of the independ-
ent variable in the range of concern, then the customary model (1) may be
appropriate. However, if the postulated physical relationship between X and
Y dictates constraint through any point (a, b) and the relationship is linear
from the maximum observed x to x - a, then Model II should be used. To pro-
ceed with the customary evaluation of Model I would be equivalent to ignoring
what is already known about the relationship between X and Y and, instead,

* relying totally on the limited information available in the sample data. The
objective should be to obtain the best interpretation of the data, which does
not override any more firmly established understanding of the situation.

Assuming Model II applies, it may still be useful to evaluate Model I to
test in the conventional way (Draper and Smith, 1966) the significance of the
estimated nonzero intercept. If this test fails to provide enough evidence to
reject the strawman hypothesis (H0: a - 0) then this failure may be cited as
additional evidence strictly from the data, substantiating the choice of Model
II to estimate 8. The results of this formal test of hypothesis should not,

* however, be relied on as the criterion for selecting Model II. it should serve
only as a source of auxiliary information clarifying the extent to which the
sample data will support the model choice. The choice should be made on the
basis of functional insight and understanding of the relationship between X
and Y.

Comparing the correlation coefficients or r-values, produced using the
real data and the extended data, is likewise not a valid method for choosing

13
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between Models I and II. The value of r2 using Model I (observed data only)
is often referred to as the reduction in variance of the estimator made possible
by using the apparent association between X and Y. A value of r2 = 0

indicates that knowledge of the X-values makes no improvement in the prediction
of Y and using the mean value of the y's as the estimator would not increase
the sum of the squares of the deviations. At the other extreme if r2 _1, all
sample points lie on a sloping straight line implying a strong predictive value.
Similarly with Model II, higher r2 values indicate improved fit of the data;
but comvaring r2 values between Models I and II does not reveal which is
correct or even preferable. There is a 2slight conceptual and a substantial
computational difference between the r2 values for the two models. The two
values should not be compared; both indicate the relative fit of various data
to their own particular model. Either value can be used to measure "goodness
of fit" in particular applications; or even to indicate the usefulness of several
versions of the particular model chosen. For example comparison of r-values
would indicate whether taking logs of the measurements, or raising them to a
given power prior to regression, improved the fit. But comparison of the r-
value would not be a valid basis for choosing between Models I and 11.

V. EXAMPLES

The following problems illustrate a frequent need to constrain the regres-
sion line in coastal engineering applications. The problems also illustrate
the usefulness of r2 to rank different predictors in terms of how well they
fit data. Before initially applying the described method to an actual problem,
it may be helpful to reanalyze one of the small data sets used in these examples
and compare the results with those published in this report.

* ** ** ** ** ** ** ** *EXAMPLE PROBLEM 1I

Consider the requirement to simulate a long-term history of wave-induced
longshore currents for a particular coastal site. Assume hindcasted wave data
are available, but that current measurements were not made over the period of
interest. According to the Shore Protection Manual (U.S. Army, Corps of

* Engineers, Coastal Engineering Research Center, 1977), the longahore current
(v) can be calculated as a function of the beach slope Cm), the gravitational
acceleration (g), and the angle and height of breaking waves (cib, Hb,
respectively).

v -20.7 m (gHb)1/2 sin 2ab()

The coefficient of proportionality (20.7) is based on typical mixing and fric-
tional factors for the surf zone. Empirical formulas, like equation (1) can be
adjusted by regression analysis of test data from the specific site of intended
application. This will customize the formula to fit site-sensitive conditions.
The longshore velocity also varies laterally within the surf zone. The problem
of estimating the spatial structure of flow across the surf zone may be avoided
by obtaining current measurements at the exact point where the long-term flow
must be reconstructed, then regressing the test measurements against simul-
taneously determined breaker conditions. Steps in such an analysis are given
below. Only a few data points are used in the example to encourage the reader
to go through the computations and check the results. The data are taken from
a frequently referenced field study done at Nags Head, North Carolina (Galvin
and Savage, 1966).

* 15
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GIVEN: Longshore current velocities (v), breaker heights (Hb), breaker
angles (ab), and the beach slope (m) determined onsite during a short
field evaluation (see Table 2).

Table 2. Field calibration data (from
Galvin and Savage, 1966).

Obsn. Hb m v

(ft) (ft/s)

1 2 0.03 2.42

2 3.2 0.026 4.33

3 1.8 0.029 1.96

4 8 0.026 1.26

REQUIRED: An equation that will predict wave-induced longshore currents for

the test site.

ANALYSIS: Because the linearity expressed in equation (1) has a firm theoreti-
cal basis in the concept of radiation stress (Longuet-Hlggins, 1970), and
because according to this concept, v = 0 whenever Hb - 0 or ab 0 0, the
prediction line must pass through the origin (0, 0). So Model II must be used.

Let

Y V

and1/
X, m(gHb)11 2 sin 2ab

Regress Y on X to determine the best estimate of the coefficient of
proportionality between X and Y.

CORRECT RESULTS:

Regression coefficient 8 - 17

Correlation coefficient r - 0.91

Standard error of B S8 - 4.6

Test statistic for 8 t = 3.7

Estimated residual variance S2 = 1.8

* CONCLUSION: The version of the Longuet-Higgins type equation that best fits
this problem site (based on available current data) is:

v 17m(gHb)1/2 sin 2ab

NOTE: Fitting the equation to the data in this example produces results closer
to those obtained with larger data sets (eq. 1) if the line is forced through
the origin rather than being fit strictly to the data without this constraint
(see Fig. 5).

16
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Figure 5. Real test data for example problem 1. Compare

the correct fit through the origin with the

customary fit.

* * * * * * * * * * * * * * * * EXAMPLE PROBLEM 2 * * * * * * * * * * * * * * *

At least 10 equations relating the velocity of longshore currents to wave
characteristics have appeared in the literature. Presumably more will appear
as knowledge increases or theory is adapted to specific wave or bathymetric
conditions (i.e., specialized for breaker type or bar dimensions). A recent
article (Komar, 1979) questions the value of including a measure of beach slope
in the general prediction equation and claims better results for

v = 0.585(gHb)1/2 sin 2cb

GIVEN: The same situation and data as in example problem 1.

REQUIRED: Determine the best fit version of the type

v = (gHb ) 1/2 sin 2%b

"* and compare the results with those obtained in example problem 1 to see if
the beach slope is indeed of any value at this particular site.

ANALYSIS: For the same reasons stated in example problem 1, regression

should require the prediction line to pass through the point (0, 0).

Let

Y=v

X - (gHb ) 1 / 2 sin 2ab

and regress Y on X using Model II with its extended data set (Fig. 6).
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•Figure 6. Real test data for example problem 2 and fitted
.. equations. Compare the correct fit through the
: origin with the customary fit.

7! CORRECT RESULTS:

Regression coefficient -0.46

Correlation coefficient r = 0.90

Standard error of Sj - 0.13

Test statistic for t - 3.6

. Estimated residual variance S x =1.8

SCONCLUSION: The best predictor of the Komar type is:

v = 0.46(gHb) 112 sin 2ab

""It would be surprising to find a clear indication of whether beach slope should
.'.be included in the predictor for longshore currents by evaluating such a

limited data set as chosen here to encourage reader computation. Indeed a
:4q comparison of Tables 3 and 4 reveals no significant differences between the

correlation coefficients or any other test statistics. However, significant
differences would be expected if a large reliable data set covering a wider
range of conditions were compared by the methods illustrated in this report.
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Table 3. Extended data set No. 1.

Oban. X y
(ft/s) (ftfs)

1 0.152 2.42

-0.152 -2.42

2 0.162 4.33

-0.162 -4.33

3 0.0827 1.96

-0.0827 -1.96

4 0.170 1.27

-0.170 -1.27

Table 4. Extended data set No. 2.

Obsn. X Y
(ft/a) (ft/s)

1 5.05 2.42

-5.05 -2.42

2 6.25 4.33

-6.25 -4.33

3 2.85 1.96

-2.85 -1.96

4 6.53 1.27

-6.53 -1.27
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